Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 655: 124004, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38492899

RESUMO

Photodynamic therapy (PDT) is a suitable alternative to currently employed cancer treatments. However, the hydrophobicity of most photosensitizers (e.g., zinc phthalocyanine (ZnPC)) leads to their aggregation in blood. Moreover, non-specific accumulation in skin and low clearance rate of ZnPC leads to long-lasting skin photosensitization, forcing patients with a short life expectancy to remain indoors. Consequently, the clinical implementation of these photosensitizers is limited. Here, benzyl-poly(ε-caprolactone)-b-poly(ethylene glycol) micelles encapsulating ZnPC (ZnPC-M) were investigated to increase the solubility of ZnPC and its specificity towards cancers cells. Asymmetric flow field-flow fractionation was used to characterize micelles with different ZnPC-to-polymer ratios and their stability in human plasma. The ZnPC-M with the lowest payload (0.2 and 0.4% ZnPC w/w) were the most stable in plasma, exhibiting minimal ZnPC transfer to lipoproteins, and induced the highest phototoxicity in three cancer cell lines. Nanobodies (Nbs) with binding specificity towards hepatocyte growth factor receptor (MET) or epidermal growth factor receptor (EGFR) were conjugated to ZnPC-M to facilitate cell targeting and internalization. MET- and EGFR-targeting micelles enhanced the association and the phototoxicity in cells expressing the target receptor. Altogether, these results indicate that ZnPC-M decorated with Nbs targeting overexpressed proteins on cancer cells may provide a better alternative to currently approved formulations.


Assuntos
Isoindóis , Compostos Organometálicos , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/química , Micelas , Polímeros , Fotoquimioterapia/métodos , Compostos de Zinco , Compostos Organometálicos/farmacologia , Compostos Organometálicos/química , Receptores ErbB , Linhagem Celular Tumoral
2.
Biomacromolecules ; 25(3): 1563-1577, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38323427

RESUMO

Hydrogels are ideal materials to encapsulate cells, making them suitable for applications in tissue engineering and regenerative medicine. However, they generally do not possess adequate mechanical strength to functionally replace human tissues, and therefore they often need to be combined with reinforcing structures. While the interaction at the interface between the hydrogel and reinforcing structure is imperative for mechanical function and subsequent biological performance, this interaction is often overlooked. Melt electrowriting enables the production of reinforcing microscale fibers that can be effectively integrated with hydrogels. Yet, studies on the interaction between these micrometer scale fibers and hydrogels are limited. Here, we explored the influence of covalent interfacial interactions between reinforcing structures and silk fibroin methacryloyl hydrogels (silkMA) on the mechanical properties of the construct and cartilage-specific matrix production in vitro. For this, melt electrowritten fibers of a thermoplastic polymer blend (poly(hydroxymethylglycolide-co-ε-caprolactone):poly(ε-caprolactone) (pHMGCL:PCL)) were compared to those of the respective methacrylated polymer blend pMHMGCL:PCL as reinforcing structures. Photopolymerization of the methacrylate groups, present in both silkMA and pMHMGCL, was used to generate hybrid materials. Covalent bonding between the pMHMGCL:PCL blend and silkMA hydrogels resulted in an elastic response to the application of torque. In addition, an improved resistance was observed to compression (∼3-fold) and traction (∼40-55%) by the scaffolds with covalent links at the interface compared to those without these interactions. Biologically, both types of scaffolds (pHMGCL:PCL and pMHMGCL:PCL) showed similar levels of viability and metabolic activity, also compared to frequently used PCL. Moreover, articular cartilage progenitor cells embedded within the reinforced silkMA hydrogel were able to form a cartilage-like matrix after 28 days of in vitro culture. This study shows that hybrid cartilage constructs can be engineered with tunable mechanical properties by grafting silkMA hydrogels covalently to pMHMGCL:PCL blend microfibers at the interface.


Assuntos
Cartilagem Articular , Fibroínas , Humanos , Engenharia Tecidual/métodos , Fibroínas/química , Hidrogéis/química , Polímeros , Tecidos Suporte/química , Poliésteres/química
3.
Langmuir ; 39(34): 12132-12143, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37581242

RESUMO

Core-crosslinked polymeric micelles (CCPMs) are an attractive class of nanocarriers for drug delivery. Two crosslinking approaches to form CCPMs exist: either via a low-molecular-weight crosslinking agent to connect homogeneous polymer chains with reactive handles or via cross-reactive handles on polymers to link them to each other (complementary polymers). Previously, CCPMs based on methoxy poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide-lactate] (mPEG-b-PHPMAmLacn) modified with thioesters were crosslinked via native chemical ligation (NCL, a reaction between a cysteine residue and thioester resulting in an amide bond) using a bifunctional cysteine containing crosslinker. These CCPMs are degradable under physiological conditions due to hydrolysis of the ester groups present in the crosslinks. The rapid onset of degradation observed previously, as measured by the light scattering intensity, questions the effectiveness of crosslinking via a bifunctional agent. Particularly due to the possibility of intrachain crosslinks that can occur using such a small crosslinker, we investigated the degradation mechanism of CCPMs generated via both approaches using various analytical techniques. CCPMs based on complementary polymers degraded slower at pH 7.4 and 37 °C than CCPMs with a crosslinker (the half-life of the light scattering intensity was approximately 170 h versus 80 h, respectively). Through comparative analysis of the degradation profiles of the two different CCPMs, we conclude that partially ineffective intrachain crosslinks are likely formed using the small crosslinker, which contributed to more rapid CCPM degradation. Overall, this study shows that the type of crosslinking approach can significantly affect degradation kinetics, and this should be taken into consideration when developing new degradable CCPM platforms.


Assuntos
Cisteína , Micelas , Polímeros/química , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Hidrólise
4.
J Control Release ; 343: 338-346, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104571

RESUMO

The size of polymeric micelles crucially affects their tumor accumulation, penetration and antitumor efficacy. In the present study, micelles were formed based on amphiphilic poly(N-2-hydroxypropyl methacrylamide)-block-poly(N-2-benzoyloxypropyl methacrylamide) (p(HPMAm)-b-p(HPMAm-Bz)) via the solvent extraction method, and factors impacting micelle size were systematically studied, including the molecular weight of the polymers, homopolymer content, and processing methods (i.e., batch process versus continuous microfluidics). The formation of core-shell structured micelles was demonstrated by light scattering, sedimentation velocity and electron microscopy analysis. Micellar size and aggregation number increased with decreasing the molecular weight ratio of the hydrophilic/hydrophobic block. The presence of hydrophobic p(HPMAm-Bz) homopolymer and high copolymer concentration increased micelle size, while the presence of hydrophilic p(HPMAm) homopolymer did not affect micellar size. Regarding processing conditions, it was found that the use of tetrahydrofuran and acetone as solvents for the polymers resulted in larger micelles, likely due to their relatively high water-solvent interaction parameters as compared to other solvents tested, i.e., dimethylformamide, dimethylacetamide, and dimethyl sulfoxide. Among the latter, only dimethylformamide led to micelles with a narrow polydispersity. Addition of dimethylformamide to an aqueous solvent and faster mixing of two solvents using microfluidics favored the formation of smaller micelles. In conclusion, our results show that the size of all-HPMA polymeric micelles can be easily tailored from 40 to 120 nm by varying the formulation properties and processing parameters.


Assuntos
Dimetilformamida , Micelas , Metacrilatos , Polietilenoglicóis/química , Polímeros/química , Solventes
5.
J Control Release ; 343: 207-216, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077739

RESUMO

Lipid Nanoparticles (LNPs) are a promising drug delivery vehicle for clinical siRNA delivery. Modified mRNA (modRNA) has recently gained great attention as a therapeutic molecule in cardiac regeneration. However, for mRNA to be functional, it must first reach the diseased myocardium, enter the target cell, escape from the endosomal compartment into the cytosol and be translated into a functional protein. However, it is unknown if LNPs can effectively deliver mRNA, which is much larger than siRNA, to the ischemic myocardium. Here, we evaluated the ability of LNPs to deliver mRNA to the myocardium upon ischemia-reperfusion injury functionally. By exploring the bio-distribution of fluorescently labeled LNPs, we observed that, upon reperfusion, LNPs accumulated in the infarct area of the heart. Subsequently, the functional delivery of modRNA was evaluated by the administration of firefly luciferase encoding modRNA. Concomitantly, a significant increase in firefly luciferase expression was observed in the heart upon myocardial reperfusion when compared to sham-operated animals. To characterize the targeted cells within the myocardium, we injected LNPs loaded with Cre modRNA into Cre-reporter mice. Upon LNP infusion, Tdtomato+ cells, derived from Cre mediated recombination, were observed in the infarct region as well as the epicardial layer upon LNP infusion. Within the infarct area, most targeted cells were cardiac fibroblasts but also some cardiomyocytes and macrophages were found. Although the expression levels were low compared to LNP-modRNA delivery into the liver, our data show the ability of LNPs to functionally deliver modRNA therapeutics to the damaged myocardium, which holds great promise for modRNA-based cardiac therapies.


Assuntos
Luciferases de Vaga-Lume , Nanopartículas , Animais , Infarto , Lipossomos , Camundongos , Miocárdio , RNA Mensageiro , RNA Interferente Pequeno/genética
6.
Pharmaceutics ; 13(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34959304

RESUMO

The aim of this study was to get insight into the internalization and transport of PEGylat-ed mixed micelles loaded by vitamin K, as mediated by Scavenger Receptor B1 (SR-B1) that is abundantly expressed by intestinal epithelium cells as well as by differentiated Caco-2 cells. Inhibition of SR-B1 reduced endocytosis and transport of vitamin-K-loaded 0%, 30% and 50% PEGylated mixed micelles and decreased colocalization of the micelles with SR-B1. Confocal fluorescence microscopy, fluorescence-activated cell sorting (FACS) analysis, and surface plasmon resonance (SPR) were used to study the interaction between the mixed micelles of different compositions (varying vitamin K loading and PEG content) and SR-B1. Interaction of PEGylated micelles was independent of the vitamin K content, indicating that the PEG shell prevented vitamin K exposure at the surface of the micelles and binding with the receptor and that the PEG took over the micelles' ability to bind to the receptor. Molecular docking calculations corroborated the dual binding of both vita-min K and PEG with the binding domain of SR-B1. In conclusion, the improved colloidal stability of PEGylated mixed micelles did not compromise their cellular uptake and transport due to the affinity of PEG for SR-B1. SR-B1 is able to interact with PEGylated nanoparticles and mediates their subsequent internalization and transport.

7.
Biotechnol J ; 16(6): e2000212, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33484630

RESUMO

BACKGROUND: CriPec technology enables the generation of drug-entrapped biodegradable core-crosslinked polymeric micelles (CCPM) with high drug loading capacity, tailorable size, and drug release kinetics. Docetaxel (DTX)-entrapped CCPM, also referred to as CPC634, have demonstrated favorable pharmacokinetics, tolerability, and enhanced tumor uptake in patients. Clinical efficacy evaluation is ongoing. CPC634 is currently stored (shelf life > 5 years) and shipped as a frozen aqueous dispersion at temperatures below -60°C, in order to prevent premature release of DTX and hydrolysis of the core-crosslinks. Consequently, like other aqueous nanomedicine formulations, CPC634 relies on cold chain supply, which is unfavorable for commercialization. Lyophilization can help to bypass this issue. METHODS AND RESULTS: Freeze-drying methodology for CCPM was developed by employing CPC634 as a model formulation, and sucrose and trehalose as cryoprotectants. We studied the residual moisture content and reconstitution behavior of the CPC634 freeze-dried cake, as well as the size, polydispersity index, morphology, drug retention, and release kinetics of reconstituted CPC634. Subsequently, the freeze-drying methodology was validated in an industrial setting, yielding a CPC634 freeze-dried cake with a moisture content of less than 0.1 wt%. It was found that trehalose-cryoprotected CPC634 could be rapidly reconstituted in less than 5 min at room temperature. Critical quality attributes such as size, morphology, drug retention, and release kinetics of trehalose-cryoprotected freeze-dried CPC634 upon reconstitution were identical to those of non-freeze-dried CPC634. CONCLUSION: Our findings provide proof-of-concept for the lyophilization of drug-containing CCPM and our methodology is readily translatable to large-scale manufacturing for future commercialization.


Assuntos
Micelas , Refrigeração , Liofilização , Humanos , Polímeros , Sacarose
8.
Eur J Pharm Biopharm ; 158: 1-10, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33152482

RESUMO

Active self-encapsulation (ASE) is a recently developed post-loading method based on absorption of (positively charged) proteins in microporous PLGA microspheres loaded with negatively charged polysaccharides (trapping agents). The aim of this study was to investigate ASE for simultaneous loading and controlled release of multiple growth factors. For this purpose, vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and insulin-like growth factor (IGF) were loaded in microspheres containing high molecular weight dextran sulfate (HDS) as trapping agent; loading was performed in a concentrated growth factor solution of low ionic strength and of pH 5 under conditions at which the proteins are positively charged. Subsequent pore closure was induced by incubation of the growth factor-loaded microspheres at 42.5 °C, i.e. above the Tg of (hydrated) PLGA (~30 °C). A 1:1:1 combination of VEGF, FGF and IGF was loaded with high loading (4.3%) and loading efficiency (91%). The in vitro release kinetics and bioactivity of loaded growth factors were studied for 4 weeks using ELISA and an endothelial cell proliferation assay, respectively. While IGF was released quickly, VEGF and FGF were continuously released for 4 weeks in their bioactive form, whereby a growth factor combination had a synergistic angiogenic effect. Therefore, ASE is a suitable method for co-loading growth factors which can provide sustained release profiles of bioactive growth factors, which is attractive for vascularization of biomaterial implants.


Assuntos
Indutores da Angiogênese/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Portadores de Fármacos/química , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Indutores da Angiogênese/farmacocinética , Materiais Biocompatíveis/farmacocinética , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fatores de Crescimento de Fibroblastos/farmacocinética , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacocinética , Somatomedinas/administração & dosagem , Somatomedinas/farmacocinética , Fatores de Crescimento do Endotélio Vascular/administração & dosagem , Fatores de Crescimento do Endotélio Vascular/farmacocinética
9.
J Control Release ; 328: 970-984, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32926885

RESUMO

To avoid poly(ethylene glycol)-related issues of nanomedicines such as accelerated blood clearance, fully N-2-hydroxypropyl methacrylamide (HPMAm)-based polymeric micelles decorated with biotin for drug delivery were designed. To this end, a biotin-functionalized chain transfer agent (CTA), 4-cyano-4-[(dodecylsulfanylthiocarbonyl)-sulfanyl]pentanoic acid (biotin-CDTPA), was synthesized for reversible addition-fragmentation chain-transfer (RAFT) polymerization. Amphiphilic poly(N-2-hydroxypropyl methacrylamide)-block-poly(N-2-benzoyloxypropyl methacrylamide) (p(HPMAm)-b-p(HPMAm-Bz)) with molecular weights ranging from 8 to 24 kDa were synthesized using CDTPA or biotin-CDTPA as CTA and 2,2'-azobis(2-methylpropionitrile) as initiator. The copolymers self-assembled in aqueous media into micelles with sizes of 40-90 nm which positively correlated to the chain length of the hydrophobic block in the polymers, whereas the critical micelle concentrations decreased with increasing hydrophobic block length. The polymer with a molecular weight of 22.1 kDa was used to prepare paclitaxel-loaded micelles which had sizes between 61 and 70 nm, and a maximum loading capacity of around 10 wt%. A549 lung cancer cells overexpressing the biotin receptor, internalized the biotin-decorated micelles more efficiently than non-targeted micelles, while very low internalization of both types of micelles by HEK293 human embryonic kidney cells lacking the biotin receptor was observed. As a consequence, the paclitaxel-loaded micelles with biotin decoration exhibited stronger cytotoxicity in A549 cells than non-targeted micelles. Overall, a synthetic pathway to obtain actively targeted poly(ethylene glycol)-free micelles fully based on a poly(HPMAm) backbone was established. These polymeric micelles are promising systems for the delivery of hydrophobic anticancer drugs.


Assuntos
Micelas , Paclitaxel , Biotina , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Células HEK293 , Humanos , Metacrilatos , Polietilenoglicóis , Polímeros
10.
Macromolecules ; 53(16): 7009-7024, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32884159

RESUMO

Dithiolanes are used to obtain dynamic and reversible crosslinks between polymer chains. Copolymers of two different dithiolane-containing cyclic carbonate monomers and ε-caprolactone (CL) were synthesized by ring-opening polymerization using a methoxy-poly(ethylene glycol) (mPEG) initiator and different catalysts (diphenyl phosphate (DPP), methanesulfonic acid (MSA), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), or Sn(Oct)2). Each catalyst required a different temperature, which had a pronounced influence on the reactivity ratio of the monomers and occurrence of transesterification reactions and, therefore, the monomer sequence. Self-crosslinkable copolymers were obtained when the dithiolane units were connected closely to the polymer backbone, whereas the presence of a linker unit between the dithiolane and the backbone prevented self-crosslinking. The former amphiphilic PEGylated block copolymers formed micelles by nanoprecipitation in the aqueous environment and crosslinked spontaneously by disulfide exchange during subsequent dialysis. These dithiolane-crosslinked micelles showed reduction-responsive dissociation in the presence of 10 mM glutathione, making them promising drug delivery systems for the intracellularly triggered cargo release.

11.
Int J Pharm ; 582: 119305, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32278056

RESUMO

One of the main challenges in clinical translation of polymeric micelles is retention of the drug in the nanocarrier system upon its systemic administration. Core crosslinking and coupling of the drug to the micellar backbone are common strategies to overcome these issues. In the present study, polymeric micelles were prepared for tumor cell targeting of the kinase inhibitor dactolisib which inhibits both the mammalian Target of Rapamycin (mTOR) kinase and phosphatidylinositol-3-kinase (PI3K). We employed platinum(II)-based linker chemistry to couple dactolisib to the core of poly(ethylene glycol)-b-poly(acrylic acid) (PEG-b-PAA) polymeric micelles. The formed dactolisib-PEG-PAA unimers are amphiphilic and self-assemble in an aqueous milieu into core-shell polymeric micelles. Folate was conjugated onto the surface of the micelles to yield folate-decorated polymeric micelles which can target folate receptor over-expressing tumor cells. Fluorescently labeled polymeric micelles were prepared using a lissamine-platinum complex linked in a similar manner as dactolisib. Dactolisib polymeric micelles showed good colloidal stability in water and released the coupled drug in buffers containing chloride or glutathione. Folate decorated micelles were avidly internalized by folate-receptor-positive KB cells and displayed targeted cellular cytotoxicity at 50-75 nM IC50. In conclusion, we have prepared a novel type of folate-receptor targeted polymeric micelles in which platinum(II) linker chemistry modulates drug retention and sustained release of the coupled inhibitor dactolisib.


Assuntos
Resinas Acrílicas/química , Antineoplásicos/farmacologia , Portadores de Fármacos , Ácido Fólico/metabolismo , Imidazóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Polietilenoglicóis/química , Quinolinas/farmacologia , Células A549 , Antineoplásicos/química , Antineoplásicos/metabolismo , Sobrevivência Celular , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Ácido Fólico/química , Transportadores de Ácido Fólico/metabolismo , Humanos , Imidazóis/química , Imidazóis/metabolismo , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Micelas , Inibidores de Fosfoinositídeo-3 Quinase/química , Inibidores de Fosfoinositídeo-3 Quinase/metabolismo , Quinolinas/química , Quinolinas/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
12.
ACS Appl Polym Mater ; 2(2): 515-527, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32090201

RESUMO

For realization of a wearable artificial kidney based on regeneration of a small volume of dialysate, efficient urea removal from dialysate is a major challenge. Here a potentially suitable polymeric sorbent based on phenylglyoxaldehyde (PGA), able to covalently bind urea under physiological conditions, is described. Sorbent beads containing PGA groups were obtained by suspension polymerization of either styrene or vinylphenylethan-1-one (VPE), followed by modification of the aromatic groups of poly(styrene) and poly(VPE) into PGA. It was found that PGA-functionalized sorbent beads had maximum urea binding capacities of 1.4-2.2 mmol/g and removed ∼0.6 mmol urea/g in 8 h at 37 °C under static conditions from urea-enriched phosphate-buffered saline, conditions representative of dialysate regeneration. This means that the daily urea production of a dialysis patient can be removed with a few hundred grams of this sorbent which, is an important step forward in the development of a wearable artificial kidney.

13.
J Biomed Mater Res B Appl Biomater ; 108(5): 2180-2191, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31943758

RESUMO

Porous titanium fiber mesh (TFM) is considered a suitable scaffold material for bone reconstruction. Also, TFM can be used to cover the surface of bone-anchored devices, that is, orthopedic or dental implants. The titanium fiber size has an effect of the stiffness as well as porosity of the titanium mesh, which can influence the behavior of bone forming cells. Therefore, the aim of this study was to vary TFM composition, in order to achieve different stiffness, and to assess the effects of such variation on the behavior of bone marrow-derived stromal cells (BMSCs). With that purpose, nine types of TFM (porosities 60-87%; fiber size 22-50 µm), were examined for their mechanical properties as well as their effect on the proliferation and differentiation of rat bone marrow-derived stromal cells (rBMSCs) up to 21 days. Dynamic mechanical analysis revealed that the stiffness of TFM were lower than of solid titanium and decreased with larger fiber sizes. The stiffness could effectively be tailored by altering fiber properties, which altered the pore simultaneously. For the 22 and 35 µm size fiber meshes with the highest porosity, the stiffness closely matched the value found in literature for cortical bone. Finally, all tested TFM types supported the growth and differentiation of rBMSCs. We concluded that TFM material has been proven cytocompatible. Further preclinical studies are needed to assess which TFM type is most suitable as clinical use for bone ingrowth and bone regeneration.


Assuntos
Materiais Biocompatíveis/química , Titânio/química , Animais , Materiais Biocompatíveis/metabolismo , Células da Medula Óssea , Osso e Ossos , Diferenciação Celular , Células Cultivadas , Elasticidade , Humanos , Teste de Materiais , Células-Tronco Mesenquimais , Osteogênese , Porosidade , Ratos , Células Estromais , Propriedades de Superfície , Titânio/metabolismo
14.
Biomacromolecules ; 21(5): 1739-1751, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31945299

RESUMO

In this study, a new type of injectable hydrogel called "HyMic" that can convert into core cross-linked (CCL) micelles upon exposure to matrix metalloproteinases (MMP's), was designed and developed for drug delivery applications. HyMic is composed of CCL micelles connected via an enzyme cleavable linker. To this end, two complementary ABA block copolymers with polyethylene glycol (PEG) as B block were synthesized using atom transfer radical polymerization (ATRP). The A blocks were composed of a random copolymer of N-isopropylacrylamide (NIPAM) and either N-(2-hydroxypropyl)methacrylamide-cysteine (HPMA-Cys) or N-(2-hydroxypropyl) methacrylamide-ethylthioglycolate succinic acid (HPMA-ETSA). Mixing the aqueous solutions of the obtained polymers and rising the temperature above the cloud point of the PNIPAM block resulted in the self-assembly of these polymers into flower-like micelles composed of a hydrophilic PEG shell and hydrophobic core. The micellar core was cross-linked by native chemical ligation between the cysteine (in HPMA-Cys) and thioester (in HPMA-ETSA) functionalities. A slight excess of thioester to cysteine groups (molar ratio 3:2) was used to allow further chemical reactions exploiting the unreacted thioester groups. The obtained micelles displayed a Z-average diameter of 80 ± 1 nm (PDI 0.1), and ζ-potential of -4.2 ± 0.4 mV and were linked using two types of pentablock copolymers of P(NIPAM-co-HPMA-Cys)-PEG-peptide-PEG-P(NIPAM-co-HPMA-Cys) (Pep-NC) to yield hydrogels. The pentablock copolymers were synthesized using a PEG-peptide-PEG ATRP macroinitiator and the peptide midblock (lysine-glycine-proline-glutamine-isoleucine-phenylalanine-glycine-glutamine-lysine (Lys-Gly-Pro-Gln-Gly-Ile-Phe-Gly-Gln-Lys)) consisted of either l- or d-amino acids (l-Pep-NC or d-Pep-NC), of which the l-amino acid sequence is a substrate for matrix metalloproteases 2 and 9 (MMPs 2 and 9). Upon mixing of the CCL micelles and the linker (l/d-Pep-NC), the cysteine functionalities of the l/d-Pep-NC reacted with remaining thioester moieties in the micellar core via native chemical ligation yielding a hydrogel within 160 min as demonstrated by rheological measurements. As anticipated, the gel cross-linked with l-Pep-NC was degraded in 7-45 days upon exposure to metalloproteases in a concentration-dependent manner, while the gel cross-linked with the d-Pep-NC remained intact even after 2 months. Dynamic light scattering analysis of the release medium revealed the presence of nanoparticles with a Z-average diameter of ∼120 nm (PDI < 0.3) and ζ-potential of ∼-3 mV, indicating release of core cross-linked micelles upon HyMic exposure to metalloproteases. An in vitro study demonstrated that the released CCL micelles were taken up by HeLa cells. Therefore, HyMic as an injectable and enzyme degradable hydrogel displaying controlled and on-demand release of CCL micelles has potential for intracellular drug delivery in tissues with upregulation of MMPs, for example, in cancer tissues.


Assuntos
Hidrogéis , Micelas , Células HeLa , Humanos , Metaloproteinases da Matriz , Polietilenoglicóis
15.
Pharmaceutics ; 11(9)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31454967

RESUMO

Poly(n-butyl cyanoacrylate) microbubbles (PBCA-MB) are extensively employed for functional and molecular ultrasound (US) imaging, as well as for US-mediated drug delivery. To facilitate the use of PBCA-MB as a commercial platform for biomedical applications, it is important to systematically study and improve their stability and shelf-life. In this context, lyophilization (freeze drying) is widely used to increase shelf-life and promote product development. Here, we set out to analyze the stability of standard and rhodamine-B loaded PBCA-MB at three different temperatures (4 °C, 25 °C, and 37 °C), for a period of time of up to 20 weeks. In addition, using sucrose, glucose, polyvinylpyrrolidone (PVP), and polyethylene glycol (PEG) as cryoprotectants, we investigated if PBCA-MB can be lyophilized without affecting their size, concentration, US signal generation properties, and dye retention. Stability assessment showed that PBCA-MB remain largely intact for three and four weeks at 4 °C and 25 °C, respectively, while they disintegrate within one to two weeks at 37 °C, thereby compromising their acoustic properties. Lyophilization analyses demonstrated that PBCA-MB can be efficiently freeze-dried with 5% sucrose and 5% PVP, without changing their size, concentration, and US signal generation properties. Experiments involving rhodamine-B loaded MB indicated that significant dye leakage from the polymeric shell takes place within two to four weeks in case of non-lyophilized PBCA-MB. Lyophilization of rhodamine-loaded PBCA-MB with sucrose and PVP showed that the presence of the dye does not affect the efficiency of freeze-drying, and that the dye is efficiently retained upon MB lyophilization. These findings contribute to the development of PBCA-MB as pharmaceutical products for preclinical and clinical applications.

16.
J Control Release ; 293: 113-125, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30472374

RESUMO

The aim of the present study was to develop folic acid (FA) conjugates which can deliver the kinase inhibitor dactolisib to the kidneys via folate receptor-mediated uptake in tubular epithelial cells. Dactolisib is a dual inhibitor of phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) and is considered an attractive agent for treatment of polycystic kidney disease. The ethylenediamine platinum(II) linker, herein called Lx, was employed to couple dactolisib via coordination chemistry to thiol-containing FA-spacer adducts to yield FA-Lx-dactolisib conjugates. The dye lissamine was coupled via similar linker chemistry to folate to yield fluorescent FA-Lx-lissamine conjugates. Three different spacers (PEG5-Cys, PEG27-Cys or an Asp-Arg-Asp-Asp-Cys peptide spacer) were used to compare the influence of hydrophilicity and charged groups in the spacer on interaction with target cells and in vivo organ distribution of the final conjugates. The purity and identity of the final products were confirmed by UPLC and LC-MS analysis, respectively. FA-Lx-dactolisib conjugates were stable in serum and culture medium, while dactolisib was released from the conjugates in the presence of glutathione. All three type of conjugates were internalized efficiently by HK-2 cells and uptake could be blocked by an excess of folic acid in the medium, demonstrating FR mediated uptake. FA-Lx-dactolisib conjugates showed nanomolar inhibition of the PI3K pathway (Akt phosphorylation) and mTOR pathway (S6 phosphorylation) in cultured kidney epithelial cells (HK-2 cells). After intraperitoneal administration, all three types conjugates accumulated extensively in kidneys of iKsp-Pkd1del mice with polycystic kidney disease. In conclusion, folate conjugates were successfully prepared by platinum(II) coordination chemistry and accumulated in a target-specific manner in kidney cells and polycystic kidneys. The folate conjugate of dactolisib thus may have potential for targeted therapy of polycystic kidney disease.


Assuntos
Antineoplásicos/administração & dosagem , Ácido Fólico/administração & dosagem , Imidazóis/administração & dosagem , Inibidores de Fosfoinositídeo-3 Quinase/administração & dosagem , Doenças Renais Policísticas/tratamento farmacológico , Quinolinas/administração & dosagem , Linhagem Celular , Liberação Controlada de Fármacos , Ácido Fólico/química , Humanos , Imidazóis/química , Túbulos Renais/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/química , Doenças Renais Policísticas/metabolismo , Quinolinas/química , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
17.
Mol Pharm ; 15(9): 3786-3795, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30063364

RESUMO

The aim of the study is to investigate the uptake by and transport through Caco-2 cells of two mixed micelle formulations (based on egg phosphatidylcholine and glycocholic acid) of vitamin K, i.e., with and without DSPE-PEG2000. The uptake of vitamin K and fluorescently labeled mixed micelles with and without PEG coating showed similar kinetics and their uptake ratio remained constant over time. Together with the fact that an inhibitor of scavenger receptor B1 (BLT-1) decreased cellular uptake of vitamin K by ∼80% compared to the uptake in the absence of this inhibitor, we conclude that both types of micelles loaded with vitamin K can be taken up intactly by Caco-2 cells via this scavenger receptor. The amount of vitamin K in chylomicrons fraction from Caco-2 cell monolayers further indicates that mixed micelles (with or without PEGylation) are likely packed into chylomicrons after internalization by Caco-2 cells. Uptake of vitamin K from PEGylated mixed micelles increased four- to five-fold at simulated gastrointestinal conditions. In conclusion, PEGylated mixed micelles are stable upon exposure to simulated gastric conditions, and as a result, they do show overall a higher cellular uptake efficiency of vitamin K as compared to mixed micelles without PEG coating.


Assuntos
Micelas , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Vitamina K/química , Vitamina K/farmacologia , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Humanos , Receptores Depuradores Classe B/metabolismo
18.
Biophys J ; 115(1): 129-138, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972804

RESUMO

Styrene-maleic acid (SMA) copolymers have attracted interest in membrane research because they allow the solubilization and purification of membrane-spanning proteins from biological membranes in the form of native-like nanodisks. However, our understanding of the underlying SMA-lipid interactions is hampered by the fact that SMA preparations are very polydisperse. Here, we obtained fractions of the two most commonly used SMA preparations: SMA 2:1 and SMA 3:1 (both with specified Mw ∼10 kD), with different number-average molecular weight (Mn) and styrene content. The fractionation is based on the differential solubility of styrene-maleic anhydride (SMAnh) in hexane and acetone mixtures. SMAnh fractions were hydrolyzed to SMA and added to lipid self-assemblies. It was found that SMA fractions inserted in monolayers and solubilized vesicles to a different extent, with the highest efficiency being observed for low-Mn SMA polymers. Electron microscopy and dynamic light scattering size analyses confirmed the presence of nanodisks independent of the Mn of the SMA polymers forming the belt, and it was shown that the nanodisks all have approximately the same size. However, nanodisks bounded by high-Mn SMA polymers were more stable than those bounded by low-Mn polymers, as indicated by a better retention of the native lipid thermotropic properties and by slower exchange rates of lipids between nanodisks. In conclusion, we here present a simple method to separate SMAnh molecules based on their Mn from commercial SMAnh blends, which allowed us to obtain insights into the importance of SMA length for polymer-lipid interactions.


Assuntos
Membrana Celular/química , Maleatos/química , Poliestirenos/química , Acetona/química , Hexanos/química , Peso Molecular , Solubilidade
19.
RSC Adv ; 8(50): 28546-28554, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35542464

RESUMO

Electrospun membranes based on biodegradable polymers are promising materials to be used for guided bone regeneration (GBR) therapy. The incorporation of osteostimulatory compounds can improve the biofunctionality of those membranes, making them active players in bone regeneration. Simvastatin has been shown to promote osteogenic differentiation both in vitro and in vivo. However, in most of these systems, the drug was quickly released, not matching the pace of bone regeneration. The aim of this study was to develop poly(l-lactic acid) (PLLA) membranes containing simvastatin (SV) that have a prolonged drug release rate, compatible with GBR applications. To this end, SV was mixed with PLLA and electrospun. The membranes were subjected to a thermal treatment in order to increase the crystallinity of PLLA. Morphological, structural and chemical properties of the electrospun membranes were characterized. The effect of the thermal treatment on the release profile of SV was evaluated by near physiological release experiments at 37 °C. The osteostimulatory potential was determined by in vitro culture of the membranes with rat bone marrow stromal cells (rBMSCs). The results confirmed that the thermal treatment led to an increase in polymer crystallinity and a more sustained release of SV. In vitro assays demonstrate cellular proliferation over time for all the membranes and a significant increase in osteogenic differentiation for the membranes containing SV subjected to thermal treatment.

20.
Eur J Pharm Sci ; 103: 94-103, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28179132

RESUMO

One of the complications of bronchotracheal cancer is obstruction of the upper airways. Local tumor resection in combination with an airway stent can suppress intraluminal tumor (re)growth. We have investigated a novel drug-eluting stent coating for local release of the anticancer drug gefitinib. A polyurethane (PU) sandwich construct was prepared by a spray coating method in which gefitinib was embedded between a PU support layer of 200µm and a PU top layer of 50-200µm. Gefitinib was either embedded in the construct as small crystals or as gefitinib-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres (MSP). The drug was incorporated in the PU constructs with high recovery (83-93%), and the spray coating procedure did not affect the morphologies of the embedded microspheres as demonstrated by scanning electron microscopy (SEM), confocal laser scanning microscopy and fluorescence microscopy analysis. PU constructs loaded with gefitinib crystals released the drug for 7-21days and showed diffusion based release kinetics. Importantly, directional release of the drug towards the top layer, which is supposed to face the tumor mass, was controlled by the thicknesses of the PU top layer. PU constructs loaded with gefitinib microspheres released the drug in a sustained manner for >6months indicating that drug release from the microspheres became the rate limiting step. In conclusion, the sandwich structure of drug-loaded PLGA microspheres in PU coating is a promising coating for airway stents that release anticancer drugs locally for a prolonged time.


Assuntos
Stents Farmacológicos , Ácido Láctico/química , Ácido Poliglicólico/química , Poliuretanos/química , Quinazolinas/química , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Excipientes/química , Gefitinibe , Humanos , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...